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Sampled-Data System Analysis of Antenna
Conical-Scan Tracking
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The conical-scan tracking system described by Ohlson and Reid in JPL Technical
Report 32-1605 is analyzed as a sampled-data feedback control system. Tracking mode
equations for both spacecraft signals and radio source signals are developed. In the case of
spacecraft tracking, a rationale is presented for selection of parameters which minimizes
the sum of the required scan radius and three times the RMS error jitter. With this
criterion, reasonable system performance can be obrained with signals down fo receiver
threshold. For radio source tracking, the RMS error jitter is negligible, and a set of system
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parameters is recommended which allows conservative operation of the system.

l. Introduction

Conical-scan tracking is a method for automatically track-
ing a signal source with a Deep Space Network (DSN) antenna
by continuously rotating the antenna a small fraction of the
antenna beam width around the tracking boresight, a hypo-
thetical line between the antenna and signal source. An error
in the tracking angle results in a systematic variation in
received signal strength which is used to derive correction
offsets in the two antenna pointing axes. The DSN has used
conical-scan tracking for several years, and an excellent report
(Ref. 1.) has been written by J.E. Ohlson and M. S. Reid
describing the system both theoretically and practically. Using
Ohlson’s work as a guide, the following report recasts the
description of the conical-scan system into that of a sampled-
data feedback control system with parameters perhaps more
familiar to the control system analyst. In addition, a rationale
is presented for optimum selection of system parameters as a
function of desired system performance. Theoretical results
derived from the sampled-data system model are in complete
agreement with Ref. 1., and a correspondence of selected
parameters is listed in Appendix B.
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ll. System Description

A block diagram of the conical-scan system is shown in
Fig. 1. Two feedback channels are used, one for an assumed
elevation axis correction and the other for an assumed cross-
elevation axis correction. Both channels are identical except
for the quadrature references, sinw,,t and cos w,, t, and any
necessary trigonometric transformations relating the assumed
axes with the actual antenna axes driven by the antenna
pointing subsystem. The radian rotation frequency, w,,, is
given by

m:»

27

“m =Pl - 4)

(1)

where P(1 - A) is the rotation period of the antenna, typically
28 seconds. After each rotation, the antenna is stopped rotat-
ing for “AP” seconds, usually two, during which time new
offset corrections are calculated and the antenna slightly
repositioned as a result. Thus P represents the total time



between successive corrections, and is the basic timing quantity
for the sampled-data model.

The receiver generates a signal strength voltage sampled at
ten times a second by the correlator. Two types of signals can
be tracked with the conical-scan system. One type is a space-
craft signal, in which case the signal strength voltage is derived
from the receiver automatic gain control (AGC) circuit. The
second signal type comes from a wide band stellar radio
source. In this case, the signal strength voltage comes from a
wide band power detector.

The correlator block provides an estimate of the offset
error by correlating the sampled signal strength voltage against
the correlator input reference. An updated estimate is
obtained for each rotation of the antenna. These estimates are
filtered by the digital filter according to the relation

Xy () = Xy(k - 1)+ kX, (k) )

where X3(k) is the kth filter output, X3(k - 1) is the previous
filter output, X,(k) is the kth filter input, and k; is a gain
constant. The antenna pointing subsystem provides a constant
offset proportional to X3 for each channel throughout the
succeeding rotation period. In addition to these fixed offsets
and the conical-scan rotation signals, the antenna pointing
subsystem provides position and velocity correction signals
from predicted information called predicts which are gener-
ated external to the system before the track. Predicts are
required by the conical-scan system because the system using
Eq. (2) is a first order system that can only correct for small
fixed offsets in the predict values. In this sense, the conical-
scan system is used only to “fine tune” the pointing angle
generated by the predicts.

lil. System Analysis

In a properly operating conical-scan tracking system, the
two feedback channels are identical but independent. There-
fore an analysis will be made only of the elevation channel,
with similar results applicable to the cross-elevation channel.

A. Laplace Block Diagram

A first step in the analysis is a formulation of the Laplace
block diagram as shown in Fig. 2. ¢(s) is the Laplace transform
of the desired elevation angle, and ((s) is the Laplace trans-
form of the elevation angle generated by the conical-scan
system. “s” is the Laplace transform complex frequency. The
channel error, £(s), given by

E(s) = ¢(s) -~ C(s) 3)

is input to the correlator which acts as an integrate-and-dump
circuit.

The correlator circuit can be represented as a pure inte-
grator whose output is the difference between the present
value and a past value occurring at the start of the integration
time. This past value is obtained through a pure delay,
¢~sP(1-4) where e is the natural logarithm base, and P(1 - 4)
is as defined in Eq. (1). “k;”, the integrator gain constant, is a
function of the signal type received, and includes several
receiver parameters. Detailed derivations of k; for both space-
craft and radio source signals will be made in later sections.
The Z-transform, (Ref. 2), of the correlator output, X,(z), is
the sum of the error estimate, X, (z), and a noise value, N(z),
generated by the receiver noise processes. z is equal to eSF,
N(z) will be determined in later sections of this report, but in
this section it will be considered as an input quantity.

The transmission function shown for the digital filter in
Fig. 2 results from taking the Z-transform of Eq. (2). Since the
offset correction calculated by the digital filter is maintained
as a constant value, C(s), throughout the antenna rotation
period, the resulting model for this operation is known as a
zero-order hold circuit with a gain constant of k, as shown in
Fig. 2.

B. Z-transform Equations

An analysis of the conical-scan sampled-data channel of
Fig. 2 will be carried out in the z complex plane. It is desired
to determine E(z), the Z-transform of E(s), as a function of
the input and noise signals. The procedure is to take the
Z-transform of the state equations of Fig. 2 and then generate
the signal flow graph of Fig.3. E(z) is then calculated by
means of Mason’s general gain formula (Ref. 3). The relevant
state equations for Fig. 2 are

z—lkh

z N

EG) = 66) - X,(2) @

X, ()= (ki%s) - X, (@) k. k, Z; lé) (1 _ e—sP(l—A))

5)
X,@) = X,() + V@) 6)
X,@) = X,0) ky (7
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Taking the Z-transform of Egs. (4) and (5) respectively gives

EQ) = 66) - X,6) k, ®)
o) 5.4
m=A

—XJ@%QHIn@% ©)

where g’(gb(s)/s) is the Z-transform of ¢(s)/s, and 3, (9/s),, - 4
is the modified Z-transform of ¢(s)/s, with “A4” substituted for
the parameter “m”. This latter expression results from the
standard technique of using the modified Z-transform to find
the Z-transform of a function with pure delay.

Egs. (6) through (9) form the signal flow graph of Fig. 3,
from which E(z) is found to be

50 5 v

E@z) = () -

z~1+ kT
N k 72
__ha (10)
z-1+kp
kT = kikdkh P(1-4) (1)

where k. is the overall loop gain constant. The response to a
constant step input, ¢,, is next found with M(z) set equal to
zero. For a constant step input

¢)L‘
o(s) e (12)

9.2
$(2) = — (13)

(o)) _ %Pz
3(‘;‘) - (14)
o)\ _ AP P

gm (T) ~¢e(z -1 + (Z N 1)2) (15)
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Using the values from Eqgs. (12) through (15) gives

¢,z

E@) = -1k, (16)

and taking the inverse Z-transform of Eq. (16) gives
= _ k
E, =09,(1- k) a7

where E is the loop error after the kth period P of the input
step. Eq. (17) shows that the loop error is driven to zero when
the input signal is a constant step offset.

A system response time constant, 7, may be defined by
using the exponential equivalent to the step offset response

(- k) = CPIT (18)

Solving Eq. (18) for 7 gives

-P

TS (- k) (19)

7 is considered to be of prime interest to the conical-scan
system user, and therefore is presented as one of the tradeoff
parameters when selecting an optimum set of system
constants.

C. Root Locus Analysis

Root locus theory is useful in predicting the region of
feedback system stability. The root locus is a plot in the
complex plane of closed loop gain poles as a function of an
open loop gain constant. A sampled-data system is stable if its
closed loop poles are within the unit circle in the z complex
plane. From Fig. 2, the open loop gain, G, is

kikhkd (1 B e—sP(l-A)) (20)
s2

G, (8) = -

Taking the Z-transform of Eq. (20) gives

T
z~1

G, ()=~ (21)



Thus k. is selected as the open loop gain constant of interest.
The closed loop gain, G, is

_ 1 . z-1
Gol2) =1 G @ z-(0-k)

(22)

From Egs. (21) and (22) it is seen that the conical-scan
channel has a single open loop pole at z equal to one. This pole
travels to the left along the real axis as a closed loop pole in
direct proportion to k. At a value of k., equal to two, which
is the upper limit for system stability, the closed loop pole
leaves the unit circle. This result is in agreement with Eq. (17)
which shows an increasing error for k. greater than two.

Also predicted by root locus theory is that a sampled-data
feedback system with only a single pole at z equal to one will
have a steady state error to a ramp or velocity input. This then
is the reason for the requirement on the predicts to com-
pensate for the velocity and higher degree components of the
pointing axis angle motion.

D. System Noise Gain

As shown in Fig. 3, system generated noise, N(z), acts as an
input to the channel loop and causes the loop error, E(z), to
jitter. The root mean square (RMS) value of the output jitter,
0y, is proportional to ¢, the RMS value of N(2). Setting ¢(s)
equal to zero in Eq. (10) gives

N(@z) kk,z

E@) = - z—1+kT

(23)

The sampled-data power spectrum (Ref. 4) of E(z) is &(z)
and is given by

2,2
<I>N(z) khkdz

1
(l—kT)( _T:k—T) (z - 1+kT)

®.(2) = CEE ") Bz))=-

(24

where ®,,(z), the power spectrum of N(z), is

@, (2) = {NEH NG (25)

Braces indicate ensemble average. For independent noise
samples of MN(z), the sampled-data autocorrelation function,
Bn(KP), of N(z) is

012\1 k=0
By (kP) = (26)
0 k#+0

The sampled-data power spectrum ®,(z) of N(z) is the two-
sided Z-transform of B, (kP). Therefore &, (z) is

oo

@ @)=Y, BykP)zF=0 (27)

k=—oc

Eq. (24) becomes

2 2,242
0% kik” z
() = - e (28)
-k, (z— l_kT)(z—1+kT)
The inverse Z-transform of ®,(z) is
-1 k-1
ﬁE(kP) i 56 dz CI>E(Z) z (29)

where the path of integration in the Z complex plane is
counterclockwise on the unit circle, and i is the positive
square root of minus one. f(kP) is the sampled-data auto-
correlation function of E(z), and kP is correlation lag time.

02 is found from

1 dz
o2 = 8,(0) = P P.(2) (30)

Substituting Eq. (28) into Eq. (30), and using the method of
residues about the pole z equal to 1 - k. gives

o k
_ N T
% kMl-4) 2k, @1

In agreement with root locus theory, and the response

" found for a step input, it is seen that the jitter on E(2)

becomes infinite as kK, approaches the value of two. Actual
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selection of system parameters depends upon the specific
relationship of k; and o, to the receiving system being used.

IV. Spacecraft Tracking Correlation
A. Derivation of Equations

A simplified block diagram of the spacecraft tracking
receiver system is shown in Fig. 4. The carder, E_,, of the
spacecraft signal impinges on the DSN antenna with a value of

E =+ 2P cos Wt (32)

ca

where P is the power in the carrier, and w, is the carrier
radian frequency. The antenna has a power gain, Gp, given by

2 w?
G,= (i)

p 16 (33)

where Y is the angle in degrees that the antenna points away
from the tracking boresight, and W is the beamwidth in
degrees between the half-power points, Thus the constant of
1/16 is chosen to give a value of 1/2 to G, when the ratio of Y
to W is 1/2. In terms of an exponential function, Eq. (33)
becomes

Gp :e—u(\bz/w2) (34)

p=41n2 (35)

where In is the natural logarithm. Egs. (33), (34), and (35)
assume a circular antenna pattern.

At point “a” of Fig. 4, the voltage V_ is

Va(t) = Ea(t) + na(l‘) (36)
Ea(t) =4/ 2Pst cos Wt (37)

Here, E (2) is the signal voltage, and n,(¢) is the noise voltage
associated with the system temperature, 7. n,(r) has a wide
band two-sided power spectral density, ®,(w), given by

KT

s

P (@) = (38)
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where K is Boltzmann’s constant equal to 1.3806 X 10-23
watt seconds/degree Kelvin. At point “b” in Fig. 4, the voltage
V, is

b

Vb(t) = Eb(t) + nb(t) (39)
Eb(t) =H/ 2Pst cos w,t (40)

where E (¢), the signal portion of ¥, has a gain factor of H,
the receiver voltage gain constant. n,(¢), the noise portion of
V., has a two-sided spectral density ¢, (w) given by

HKT,
2 (41)

® () =

with a one-sided noise bandwidth of B hertz formed by the IF
bandpass characteristic of the receiver. This type of noise, as
derived in Appendix A of Ref. 5, can be represented as

n (1) =2 (n,(2) sin Wyt + ny(1) cos w,f) (42)

where @, and ®,, the power spectral densities of n,(r) and
n,(t), are

®,(w) = 0,(w) = () 43)

and n, (1) and n,(r) are independent baseband signals centered
about zero frequency with a two-sided bandwidth of B hertz.

At point “c” in Fig. 4, the voltage V', becomes

V@)= E (&) +n2) 44
E (1) = 2H\/PSGP cos® ¢t (45)

n (1) = 2(n (1) sin wt + ny(t) cos wy) cos w t (46)

High order trigonometric terms in Eqs. (45) and (46) are
eliminated by the low pass filter in Fig. 4, and therefore the
voltage V; at point “d” becomes

VD) = E 0+ n 0 @7)



E()=HVPG, (48)
n (1) =n (1) (49)

where E4(t) and n,(¢) are respectively the signal and noise
portions of V,(r). This voltage is sampled by the antenna
pointing system computer and a correlation summation is
formed which closely approximates the continuous integral
shown in the correlator box of Fig. 4. At the end of each
period P, an estimate, X,, of the offset error is provided such
that the mean, X, is

P
X = kcf dt E (1) sinw, t (50)
AP
and the noise portion, N, is
P
N= kcf dt n, (1) sin w, ¢ (51)
AP

where k_ is the correlator gain constant. The cross-elevation
correlator integral would contain the terms cos w,,, # instead of
the term sin w, 7.

B. Correlation Gain Constant

G, in Eq. (48) is a function of time ¢ due to the action of
the conical-scan motion of the antenna. This motion produces

a time variation on Y2 in Eq. (34) given by

V2(0) = (0 +R cos w, 1) + (¢ + R sin w 0 (52)

where ¢ and ¢ are respectively the cross-elevation and eleva-
tion errors, assumed constant for AP <t <P. R cos w,, tand
R sin w,,t are the conical-scan drive equatjons to the assumed
cross-elevation and elevation antenna pointing axes. When the
offsets are zero, the scan radius R is the constant angle with
which the antenna rotates about the tracking boresight. Using
Egs. (52) and (34), Eq. (48) becomes

Ed(t) =H+\P_exp |:~ —M-(R2 +02 +¢2
s w2

+ 2R(6 cos w,_ 1+ ¢ sin comt)):l (53)

From tables of integrals, Ref. 6, the following equation may
be derived

ct2mw
f dx exp (4 cos X + B sin X) sin X =
[+

2nB

/Az"fB2 Ii(V.A2'PB2)
(54)

where I, is the modified Bessel function of order one, and ¢ is
an arbitrary constant. Using Eqgs. (53) and (54), Eq.(50) is
evaluated to be

X, =-kH~NP P(1-A)exp- L [(R2+62+¢2)]
© 7 2w

x —® (R“\/¢ +92) (55)

N w?

If the assumption is made that § and ¢ are much smaller than
R, the approximation of

X ~1-X (56)

may be made to Eq. (50) before evaluation of the integral, or
the approximation of

ol

1 (X)~ (57)

may be made to Eq. (55). In either case, Eq. (55) simplifies to

#R2
X =-k, HP P(l—A)—exp( )¢
2W2
¢, 0 <<R (58)
From Fig. 2, the correlator response is
k;
X,(9) = EG) (1 - esPO-4)) (59)
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For a constant input, - ¢

B =-2 (60)
Therefore Eq. (59) becomes
ok,
X ()=~ ;’— (1 - e'SP(I'A)) (61)
Taking the Z-transform of Eq. (61) gives
¢k, P(1 - A4)
X\@= -~ (62)
The inverse Z-transform of Eq. (62) is
X, =- ¢k A(1-4) n=1,2,... (63)

Comparing Eqgs. (58) and (63) gives the value for the correla-
tion constant k;.

uR?
k. =k, H~ P — exp ( ) (64)
2w2 2w?

C. Noise Variance

The variance 012\, of the noise NV of Eq. (51)is
= <N (65)

Substituting Eq. (51) into Eq. (65) gives

P P-t
2 _ 2 . .
oy =k f dtf dr, B(r)sinw tsinw, (£+7)
AP JaP—t

(66)

where §,(7,) is the autocorrelation of n () as a function of
the lag time 7, . § is the inverse Fourier transform of &,,.

oo
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From Egs. (41), (43), and (49)

H*KT
s

@ () =

(68)

The bandwidth of n,(¢) may be taken as infinite since Eq. (51)
acts as an integrator with a resulting bandwidth much less than
the B hertz specified for Eq. (41). Evaluating Eq. (67) using
Eq. (68) gives

H*KT

By(r)) =—5— 8(r)) (69)

where 8(7,) is the Dirac delta function, (Ref. 7). From Egs.
(66) and (69), o, is found to be

kH

oy = VKT 1 - 4) (70)

2

and therefore, Eq. (31) becomes

o - exp(uR2/2w2 / / ky
P P(1 - 4) 27k

D. Spacecraft Correlation S-Curve

The transfer function specified by Eq. (58) is true only in
the region where ¢ is close to zero. As the offset error ¢
departs from zero, a closer approximation to Eq. (55) is found
by including the ¢? value in the exponential term.

X, =-k HNP R - 4) &

R2 2
X exp (— L—) ¢ exp (— ﬂ) (72)
2W? 2W?
Normalizing Eq. (72) gives

- 2X, W exp mR2/2w2)_ P wé 2]
d k HNP P(1- A)Ry W P { 3(W) (73)

A plot of Eq. (73) is shown in Fig. 5. Also shown in Fig. 5 are
values for the slope of Y. This slope is a multiplying factor to



k; for a large deviation of ¢. Examination of Fig. 5 shows that
the slope error is less than 20% for values of ¢ less than 0.22.

V. Selection of Parameters

In this section, a rationale will be developed for selection of
parameters which will provide in a defined sense, an optimum
tradeoff between the system time constant 7, and the scan
radius R. R results in a loss of signal strength called crossover
loss due to the fact that the antenna is pointing R degrees
away from the target. This loss is the value of G, when R is
substituted for ¥ in Eq. (34). Thus the crossover loss, C;, in
dB is given by

R\
¢, = (W 40 log . 2 (74)

Normally it is desirable for C; to be in the order of 0.1 dB.
Increasing the value of R will result in excessive crossover loss.
Howgver, Eq. (71) shows that for weak signal levels, low values
of R will result in excessive jitter in the error. If some func-
tion, F(R/W), can be found which combines the effects of
both crossover loss and error jitter, then an optimum R can be
determined which will minimize F. A recommended function
for this purpose is

F(B—)= R,3 ;—E (75)

Thus, statistically speaking, the antenna pointing loss for both
R and error jitter will be less than F for 99.7% of the time.
Using Eq. (71), Eq. (75) and its derivative become

(78)

Solving for F and D in Eqgs. (76) and (77) gives the mini-
mum value of F and the optimum value of D as a function of
R.

RY_R 1
F(W) W 1+1_#(%)2 (79)
N ) T N

R2

t-u(p)

For selected values of T, P, P, and A, the optimum value
of k, may be found from Egs. (78) and (80). The system time
constant 7 is then found from Eq. (19). Fig. 6 is a plot of these
results and shows system time constant 7 versus crossover loss
in dB from Eq. (74) for selected values of T, and P, in dBm.
The dependence of 7 on P is very weak and therefore a value of
30 seconds is selected as being satisfactory for all cases in
practise. The value of 4P equal to two seconds is also selected
as being used in the current system (Ref, 1).

The values in Fig. 6 are actually the constraints imposed
upon the conical-scan system by the weakness of the received
signal. For example, if a 25% receiver is to receive a signal at
-175 dBm, with a system time constant less than 400 seconds,
then the optimum crossover loss is 0.16 dB. Alternatively, if
the crossover loss is constrained to be 0.10 dB, then the
system time constant must be set to 950 seconds to avoid
excessive jitter in the error offsets.

Setting the system time constant and crossover loss for a
given weak signal, and then receiving a stronger signal will
simply result in less error jitter if the proper procedure is
followed. From Egs. (11) and (64), it is seen that the system
gain is proportional to the square root of the received signal
power. Thus the system gain and hence the time constant 7
should be adjusted for the actual signal strength being
received. One method for such adjustment is to open the loop,
put in a known offset ¢ and measure the average correlator
output X, . The value of k; can then be found from Eq. (63).
The values of kX, and 7 are then found from Egs. (11) and

(19).

In the case of strong signal reception, the recommended
parameters for conservative operation of the conical-scan
system are a time constant of 90 seconds and a crossover loss
of 0.09 dB. A much smaller time constant, or a lower cross-
over loss, might have a negative effect on the antenna mech-
anisms and increase jitter caused by imperfect mechanical
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components. After selecting the desired values of 7 and cross-
over loss, C;, the corresponding values of k. and R may be
found by inverting Eqgs. (19) and (74).

kp=1-exp (_é)) 81

¢, 2
R=Wa01og, 2 (82)

Since Eq. (79) shows a fixed relationship exists between F' and
R, independent of T and P,, the value of F'in dB is also given
in Fig. 6 as a horizontal scale beneath C; according to an
equation similar to Eq. (74).

= 2
F,p=F"40log 2 (83)

VI. Radio Source Tracking Correlation
A. Correlation Gain Constant

The development of equations for radio source tracking fol-
lows alonglines similar to those for spacecraft tracking. Figure 7
is a simplified block diagram of the radio source track-
ing receiver system. Wide band energy from the radio source
impinges upon the antenna with an equivalent noise tempera-
ture of T, degrees. At point “e” of Fig. 7, the voltage V,(¢) is
random noise

V(1) =nt) (34

with @, the two-sided spectral density of n,(¢), being

KTi
®,(w) =5 (85)
T =T +G.T (86)
i s pr

where T; is the total input temperature, T, is the system
temperature, and G_ is the antenna power gain defined in
Eq. (34). V(1) the voltage at point “f” in Fig.7, is also
random noise

V(0 =0 (87)

94

H?KT.

Bw)= 5 (88)

The two-sided spectral density &, is band limited by the
one-sided IF receiver bandwidth of B hertz. Vg(t), the voltage
at point ““g” of Fig. 7, is formed by the squaring operation of
the power detector

V(D =E@) +n() (89)
E®)= «H’ KT, B (90)
¢ (0) = CH*K*T? B 1)

where E,(7) is a DC voltage proportional to the input power, &
is the power detector gain constant, 7,(r) is a noise voltage
riding on E,(¢), and @,(0) is the spectral density of n,(?)
about zero frequency. High frequency terms from the squaring
process are filtered out by a low pass filter internal to the
power detector.

After each period P, the correlator output X, is

X,=X +N (92)
P

X, =k, f dt Eg(t) sin w1 (93)
AP
P

N=k, f dt ng(t) sin @, ¢ 94)
AP

Using Eqgs. (34), (52), (54), (86), (90), and (93), X, is found
to be

X, =~ k oH*KB(1 - AT, exp [— R+ 9?4 32)]
[ r w2

¢ 2R ST
T EE) e



For ¢ and 8 much less than R, the approximation of Eq. (56)
or of Eq. (5§7) may be used to linearize X,

- 2 Ry uR?
Xl =- chtH KBP(1 - A)Tr—m; exp “V ¢ (96)

Comparison with Eq. (63) gives the constant k;

k oH*KBT il 2
T )

kl_ = > V 7N
The S-curve constraint for larger values of ¢ is
2
X, Wexp (—“R—)
- W) 9 ol w2
- 2 “w P Ml
k aH*KBA(1 - A)T Ry

(98,

and is also plotted in Fig. 5.

B. Radio Source Tracking Noise

The noise variance 012\/ is found by substituting Eq. (94)

into Eg. (65) to give

-P P-t
2 _ 32
oy = k2 j dt f dr Bg(Tl)
AP AP-t
sin w,, ¢ sinw, (7+71) (99)

where Bg('rl) is the autocorrelation of ng(t) as a function of
the lag time 7,. Using the same reasoning as was done for
spacecraft tracking, Bg('rl) is found to be

B,(7)) =’ H*'K* T B 8(r)) (100)

where T} is now taken to be

(101)

Egs. (99), (100), and (101) give

-kaH2K<T +exp[

V«R2 /BH(1 - A)
w2 r 2

(102)
from which Eq. (31) becomes
2{T exp + T)
’ W ( kr (103)
E TRuv 2BP(1 - 2- k.

For normal radio star sources, the large value of B, typically
107 hertz, makes o insignificant. Therefore the conservative
parameters recommended for strong signal spacecraft tracking
are also recommended for radio source tracking.

VIl. Conclusion

The conical-scan tracking system has been analyzed in
terms of a sampled-data feedback control system. This can
facilitate further investigation into such questions as response
to ramp inputs, and design of a higher order loop. Moreover, a
rationale has been developed for selection of system param-
eters in both the spacecraft and radio source tracking modes.
In the case of spacecraft tracking it is shown that reasonable
tracking performance can be obtained at signal levels down to
receiver threshold. Appendix A lists the symbols used in this
report and the equations in which they first appear. Appen-
dix B gives the correspondence between selected symbols of
this report and symbols of Ref. 1.
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Appendix A

List of Symbols

Following is a list of symbols used in this report and the equation number in which they first appear.

A
ds)
CL
D
E(s)
E(z)

Qh.] ﬁtq QE’.] Qh’

Q.0
I\.Nm

FITT TR0

=
~3

==

S
[N

M
3)
(74)
(76)
3)
®)
(36)
(39)
(44)
(32)
(47)
(89)
(75)
(83)
(22)
(20)
(33)
(40)
(38)
@)
(50)
2)
)
(%)
(11)
(6)
(42)
(42)

n,

y,

NS
o

=
®

=
g

SRR R R B Ko Rap S

RN b B

(36)
(39)
(44)
@47
(84)
(87)
(89)
0]

(32)
(52)
€))

(86)
(86)
(38)
(36)
(39)
(44)
@é47
(84)
(87)
(89)
(33)
)

2

@

(73)
4)

(90)

€L £ 5B B0 PP L0

(66)
(29)
(99)
(26)
(69)
(52)
(34)
(30)
(26)
(18)
(66)
(52)
(12)
3)

(8)

(43)
(43)
(38)
¢“1)
(24)
(85)
(88)
©n
(24)
(1)

(32)
(33)
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Appendix B
Correspondence With TR 32-1605

A correspondence is given between selected symbols of
Technical Report 32-1605 and the equivalent symbol or ex-
pression in this report. Numbers in parentheses are the equa-
tion numbers in TR 32-1605 in which the symbols first appear.

TR 32-1605 This Report
A (17) kP(1 - A)
B (i1) B
c an k, HK
g (102) G,

h (15) kyk
K (73) k H

k 99) K

N, (65 KT,

P (15) P(1-4)
Pg 61) P

R (1) R

r (27) 1-kp
T, (10a) 1,
T,p (10a) T,

T (10a) T,

w (49) W

B (3) v

¢ () ¢

Oy 22) On

g4 (38) og

T (35) T

w,, ¢} W,
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